
 הוהי

Generative Model Learning Logs

Author: CuiEM
Education: UCAS
Date: May 6, 2025

“Ywaq zuq ywag shn’ma Bo’al za qwor.”

https://cuiem.github.io/

Generative Model Learning Log CuiEM

Contents 0
1 Introduction 3

1.1 First Thing to Say . 3

1.2 Let’s Begin with Chain Rule! . 3

1.3 Bayesian Network . 4

1.4 Discriminative VS. Generative . 5

1.5 Continuous Variables . 5

2 Autoregressive Model 7

2.1 Fully Visible Sigmoid Belief Network (FVSBN) 7

2.2 Neural Autoregressive Density Estimation (NADE) 8

2.3 What if Neural Network? . 9

3 Variational Autoencoder 10

3.1 Latent Variable Model . 10

3.2 The Evidence Lower bound . 11

3.3 Variational Inference . 12

3.4 Optimization . 13

3.5 Autoencoder Perspective . 15

4 Flow Model 16

4.1 Quick Recap and Foreshadowing . 16

4.2 Change of Variables . 16

4.3 Normalizing Flow Models . 17

4.4 Different Designs . 18

5 Generative Adversarial Networks 19

5.1 Likelihood-Free Learning . 19

5.2 Generative Adversarial Networks . 19

5.3 Classes . 21

6 Energy-Based Generative Model 22

6.1 Parameterizing Probability Distributions . 22

Skitsh qi’uthik illith! Page 1

Generative Model Learning Log CuiEM

7 Score-Based Generative Model 23

7.1 Denoising Score Matching . 23

7.2 Sliced Score Matching . 23

7.3 Noise Conditional Score Network . 23

A Maximum Likelihood Learning 24

B Mathmatical Theorems 24

Skitsh qi’uthik illith! Page 2

Generative Model Learning Log CuiEM

Introduction 1
1.1 First Thing to Say

This learning log of Generative Model is a digital version of my learning note during my
postgraduate study. It mostly came from a seriese of video in Youtub (Stanford CS236 and
Aladdin Persson) and some papers which will be discussed in detail in my website.

1.2 Let’s Begin with Chain Rule!

Definition 1.1 - Generative Model1.

A generative model is a statistical model of the joint probability distribution 𝑃(𝑋 , 𝑌) on a
given variable 𝑋 and target variable 𝑌 (Ng and Jordan, 2001); A generative model can be used
to ”generate” random instances (outcomes) of an observation 𝑥 .

Figure 1: Generative Model

In the above figure1, we can see that the whole process is about getting the model 𝑃𝜃 close
to the true data distribution 𝑃𝑑𝑎𝑡𝑎. Unfortunately, we don’t know both the true data distribution
𝑃𝑑𝑎𝑡𝑎 and the model 𝑃𝜃 .

There is a simpliest method to get the model 𝑃𝜃 which is Chain Rule , we can generate
samples if given first 𝑃(𝑆1), which is the basci idea behind the Autoregressive model in Sec-
tion2.

Method 1.1 - Chain Rule.

𝑃(𝑆1 ∩ 𝑆2 ∩ ⋯ ∩ 𝑆𝑛) = 𝑃(𝑆1)𝑃(𝑆2|𝑆1)⋯ 𝑃(𝑆𝑛|𝑆1 ∩ 𝑆2 ∩ ⋯ ∩ 𝑆𝑛−1) (1.1)

1Definition Comes from Wikipedia

Skitsh qi’uthik illith! Page 3

https://www.youtube.com/watch?v=VJWvU_WZl-Y&list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU
https://www.youtube.com/@AladdinPersson
https://github.com/CuiEM/Generative-Model-Learning-Log
https://en.wikipedia.org/wiki/Generative_model

Generative Model Learning Log CuiEM

Still, this simple model have huge amounts of parameters. So let’s make a stronger as-
sumption:

Assumption 1.1 - Assumption of Independence.

(𝑋𝑖+1 ⟂ 𝑋1, … , 𝑋𝑖−1)|𝑋𝑖 (1.2)

So we can get a simple model with 2𝑛 − 1 parameters:

𝑃(𝑋1, … , 𝑋𝑛) = 𝑃(𝑋1)𝑃(𝑋2|𝑋1)𝑃(𝑋3|𝑋2)⋯ 𝑃(𝑋𝑛|𝑋𝑛−1) (1.3)

1.3 Bayesian Network

However, above assumption is too strong, we need to make it weaker by building a Bayesian
Network with a tool called Conditional Independence .

Method 1.2 - Bayesian Rule.

𝑃(𝑌 |𝑋) = 𝑃(𝑋 |𝑌)𝑃(𝑌)
𝑃(𝑋) (1.4)

Figure 2: Bayesian Network Example

For example, we are given a Bayesian Network(which is must be a DAG) in the above
Figure2, we can get below joint distribution:

𝑃(𝑑, 𝑖, 𝑔, 𝑠, 𝑙) = 𝑃(𝑑)𝑃(𝑖)𝑃(𝑔|𝑖, 𝑑)𝑃(𝑠|𝑖)𝑃(𝑙|𝑔) (1.5)

which coulde be a verly long expression in Chain Rule:

𝑃(𝑑, 𝑖, 𝑔, 𝑠, 𝑙) = 𝑃(𝑑)𝑃(𝑖|𝑑)𝑃(𝑔|𝑖, 𝑑)𝑃(𝑠|𝑖, 𝑑, 𝑔)𝑃(𝑙|𝑖, 𝑑, 𝑔, 𝑠) (1.6)

Skitsh qi’uthik illith! Page 4

Generative Model Learning Log CuiEM

1.4 Discriminative VS. Generative

Example 1.1.

The example is shown in belowpicture. 𝑋𝑖 are conditionally independent given 𝑌 :
So the joint distribution is:

𝑝(𝑦, 𝑥1, … 𝑥𝑛) = 𝑝(𝑦)
𝑛

∏
𝑖=1

𝑝(𝑥𝑖 ∣ 𝑦) (1.7)

Predict with Bays Rule in Equation1.4:

𝑝(𝑌 = 1 ∣ 𝑥1, … 𝑥𝑛) =
𝑝(𝑌 = 1)∏𝑛

𝑖=1 𝑝(𝑥𝑖 ∣ 𝑌 = 1)
∑𝑦={0,1} 𝑝(𝑌 = 𝑦)∏𝑛

𝑖=1 𝑝(𝑥𝑖 ∣ 𝑌 = 𝑦) (1.8)

Using Chain Rule in Equation1.1, we get

𝑝(𝑌 ,X) = 𝑝(X ∣ 𝑌)𝑝(𝑌) = 𝑝(𝑌 ∣ X)𝑝(X) (1.9)

Corresponding Bayesian Networks is shown in below picture. In a easiest way to say:
Discriminative Model is trying to predict the class of a sample given the sample itself; whereas
Generative Model is trying to predict the sample given the class.

Figure 3: Discriminative VS. Generative

1.5 Continuous Variables

If X is a continuous random variable, we can usually represent it using its probability density
function 𝑝𝑋 ∶ ℝ → ℝ+. However, we cannot represent this function as a table anymore. But
Chain rule, Bayes rule, etc all still apply.

Skitsh qi’uthik illith! Page 5

Generative Model Learning Log CuiEM

Example 1.2 - Variational autoencoder (VAE).

Bayes net Z → X and:

• 𝑍 ∼ 𝒩 (0, 1)
• 𝑋 ∣ (𝑍 = 𝑧) ∼ 𝒩 (𝜇𝜃 (𝑧), 𝑒𝜎𝜙(𝑧)) where 𝜇𝜃 (𝑧) and 𝜎𝜙(𝑧) are neural networks with parame-
ters (weights) 𝜃 , 𝜙 respectively.

Skitsh qi’uthik illith! Page 6

Generative Model Learning Log CuiEM

Autoregressive Model 2
2.1 Fully Visible Sigmoid Belief Network (FVSBN)

Example 2.1 - Binarized MNIST.

A dataset of handwritten digits (binarized MNIST):

Each image has 𝑛 = 28 × 28 = 784 pixels. Each pixel can either be black (0) or white (1). So
we need to learn a probability distribution 𝑝(𝑥) = 𝑝(𝑥1, … , 𝑥784) over 𝑥 ∈ 0, 1784, 𝑥 looks like
a digit.

First of all, according to Chain Rule we know that

𝑝(𝑥) = 𝑝(𝑥1, … , 𝑥784) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥3|𝑥1, 𝑥2)⋯ 𝑝(𝑥784|𝑥1, … , 𝑥783) (2.1)

Now we assuem that:

Definition 2.1 - Modeling Structure for FVSB(Frey et al., 1995).

𝑝(𝑥1, … , 𝑥784) = 𝑝𝑃𝐶𝑇 (𝑥1; 𝛼1)𝑝𝑙𝑜𝑔𝑖𝑡(𝑥2 ∣ 𝑥1; 𝛼2)⋯ 𝑝𝑙𝑜𝑔𝑖𝑡(𝑥784 ∣ 𝑥1, … , 𝑥783; 𝛼784) (2.2)

• 𝑝𝑃𝐶𝑇 (𝑋1 = 1; 𝛼1) = 𝛼1

• 𝑝𝑙𝑜𝑔𝑖𝑡(𝑋2 = 1 ∣ 𝑥1; �2) = 𝜎(𝛼20 + 𝛼21𝑥1)
• 𝑝𝑙𝑜𝑔𝑖𝑡(𝑋3 = 1 ∣ 𝑥1𝑥2; �2) = 𝜎(𝛼30 + 𝛼31𝑥1 + 𝛼32𝑥2)

We are using parameterized functions (e.g., logistic regression above) to predict next pixel
given all the previous ones. Called Autoregressive model .

In the Binarized MNIST, the conditional variables 𝑋𝑖 ∣ 𝑋1, … , 𝑋𝑖−1 are Bernoulli with pa-
rameters. Thus, we let:

𝑥̂𝑖 = 𝑝(𝑋𝑖 = 1 ∣ 𝑋<𝑖; 𝛼 𝑖) = 𝜎(𝛼 𝑖0 +
𝑖−1
∑
𝑗=1

𝛼 𝑖𝑗𝑥𝑗) (2.3)

Now with the help of probability, we know how to sample from model:

Skitsh qi’uthik illith! Page 7

Generative Model Learning Log CuiEM

1. Sample ̄𝑥1 from 𝑝(𝑥1)
2. Sample ̄𝑥2 from 𝑝(𝑥2 ∣ 𝑥1 = ̄𝑥1)
3. Sample ̄𝑥3 from 𝑝(𝑥3 ∣ 𝑥1 = ̄𝑥1, 𝑥2 = ̄𝑥2)
4. …

2.2 Neural Autoregressive Density Estimation (NADE)

Still, FVSBN couldn’t give us a satisfying result. So, to improve the model, we need to use
neural networks instead of logistic regression.

Definition 2.2 - Neural Networks instead of Logistic Regression.

h𝑖 = 𝜎(𝐴𝑖x<𝑖 + c𝑖)
𝑥̂𝑖 = 𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1; 𝐴𝑖, c𝑖, 𝛼𝑖, 𝑏𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

parameters

) = 𝜎(𝛼𝑖h𝑖 + 𝑏𝑖) (2.4)

From above equation, we can get the original structure of NADE(Larochelle and Murray,
2011). Thus, we can visualize it as follows:

Figure 4: Structure of NADE

However, there are too much parameters in the original model. We let matrix 𝐴 share
parameters across all the layers.

Definition 2.3 - Modeling Structure of NADE.

h𝑖 = 𝜎(𝑊⋅,<𝑖x<𝑖 + c)
𝑥̂𝑖 = 𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1) = 𝜎(𝛼𝑖h𝑖 + 𝑏𝑖)

(2.5)

The parameters sharing can be visualized as follows which is an example:

WLOG,we can extendmodel not only to non-binary discrete randomvariable𝑋𝑖 ∈ {1, … , 𝐾},
but also to continuous random variables 𝑋𝑖 ∈ ℝ (RNADE(Uria et al., 2014)).

Skitsh qi’uthik illith! Page 8

Generative Model Learning Log CuiEM

2.3 What if Neural Network?

On the surface, FVSBN and NADE look similar to an Autoencoder:

• Encoder: 𝑒(𝑥) = 𝜎(𝑊 2(𝑊 1𝑥 + 𝑏1) + 𝑏2)
• Decoder: 𝑑(𝑒(𝑥)) ≈ 𝑥

So how to get a generative model from an autoencoder? we can use a single neural
network (with n inputs and outputs) to produce all the parameters 𝑥̂ in a single pass.

• MADE(Germain et al., 2015)

• Character RNN

• Pixel RNN(Van Den Oord, Kalchbrenner, and Kavukcuoglu, 2016)

• Pixel CNN(Van den Oord et al., 2016)

• PixelDefend(Song et al., 2017)

• WaveNet(Van Den Oord, Dieleman, et al., 2016)

Skitsh qi’uthik illith! Page 9

Generative Model Learning Log CuiEM

Variational Autoencoder 3
3.1 Latent Variable Model

Before in the Section Autoregressive Model we can see that probability distribution is only
inferenced by the data themself. But in reality, lots of variability in images x due to gender, eye
color, hair color, pose, etc. However, unless images are annotated, these factors of variation are
not explicitly available (latent). So the key idea is to explicitly model these factors using
latent variables z .

Figure 5: Simple Latent Variable Model

Latent variables z correspond to high level features. However, it is very difficult to specify
these conditionals by hand. That’s why we need Latent Variable Model which would finish
this task.

Morever, we could choose to use neural networks to model the conditionals (deep latent
variable models), or mixture simple distribution to build complex distribution (e.g. Mixture of
Gaussians).

Definition 3.1 - Mixture of Gaussians. Bayes net: 𝑧 → 𝑥 .
Thewhole modeling process actually looks like a kind of unsupervised learning: Clustering. 𝐾
means there are 𝐾 clusters and each 𝑘 ∈ 𝐾 : 𝜇𝑘 , Σ𝑘 corresponds to one probability distribution
𝑝(x ∣ z = 𝑘):

• 𝑧 ∼ Categorical(1, ⋯ , 𝐾)
• 𝑝(x ∣ z = 𝑘) = 𝒩 (𝜇𝑘 , Σ𝑘)

Thus, the probability distribution of x is equal to:

𝑝(x) = ∑
z
𝑝(x, z) = ∑

z
𝑝(z)𝑝(x ∣ z) =

𝐾
∑
𝑘=1

𝑝(z = 𝑘)𝒩 (x; 𝜇𝑘 , Σ𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
component

(3.1)

Thinking out of box, we can extend above model into infinite number of Gaussians:

Skitsh qi’uthik illith! Page 10

Generative Model Learning Log CuiEM

Definition 3.2 - A mixture of an infinite number of Gaussians.

Even though 𝑝(𝑥 ∣ 𝑧) is simple, the marginal 𝑝(𝑥) is very complex/flexible

• 𝑧 ∼ (𝑁 (0, 𝐼))
• 𝑝(x ∣ z) = 𝒩 (𝜇𝜃 (z), Σ𝜃 (z)) where 𝜇𝜃 , Σ𝜃 are neural networks

– 𝜇𝜃 (z) = 𝜎(𝐴z + 𝑐) = (𝜎(𝑎1z + 𝑐1), 𝜎(𝑎2z + 𝑐2)) = (𝜇1(z), 𝜇2(z))
– Σ𝜃 (z) = 𝑑𝑖𝑎𝑔(exp(𝜎(𝐵z + 𝑑))) = (exp(𝜎(𝑏1z + 𝑑1)) 0

0 exp(𝜎(𝑏2z + 𝑑2)))
– 𝜃 = (𝐴, 𝐵, 𝑐, 𝑑)

Bingo! we get the structure of VAE(Kingma, 2013) very quickly. Yes, it is so simple that
you couldn’t believe it. Actually the hard part is training beacuse even though 𝑝(x ∣ z) is
simple, the marginal 𝑝(𝑥) is very complex or expensive.

3.2 The Evidence Lower bound

Follw the last subsection’s architecture, we now know the ultimate goal is to make sure the
generative model give the right sample in highest probability with parameter 𝜃 :

𝜃∗ = argmax
𝜃

𝑛
∏
𝑖=1

𝑝𝜃 (x(𝑖)) = argmax
𝜃

𝑛
∑
𝑖=1

log 𝑝𝜃 (x(𝑖)) (3.2)

Let’s make life easier by considering discrete condition here. (you can check continuous
condition here.) The Log-Likelihood function can be transformed like this:

log(∑
z∈𝒵

𝑝𝜃 (x, z)) = log(∑
z∈𝒵

𝑞(z)
𝑞(z)𝑝𝜃 (x, z)) = log (𝔼z∼𝑞(z) [

𝑝𝜃 (x, z)
𝑞(z)]) (3.3)

Above eqaution still is hard to compute. Thus, instead of getting the direct result of it, we
can get the Evidence Lower Bound(ELBO) by Jensen Inequality:

log 𝑝(x; 𝜃) ≥ ∑
z
𝑞(z) log (𝑝𝜃 (x, z)𝑞(z))

= ∑
z
𝑞(z) log 𝑝𝜃 (x, z) − ∑

z
𝑞(z) log 𝑞(z)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Entropy 𝐻(𝑞) of 𝑞

= ∑
z
𝑞(z) log 𝑝𝜃 (x, z) + 𝐻(𝑞)

(3.4)

The equality holds if 𝑞(z) = 𝑝(z ∣ x; 𝜃). Also, there is another perspective we can examine
the ELBO. In other words, we can derive the ELBO from a different and elegant way.

Skitsh qi’uthik illith! Page 11

Generative Model Learning Log CuiEM

By the non-negative property of KL divergence, we know:

𝐷𝐾𝐿(𝑞(z)‖𝑝(z|x; 𝜃)) = −∑
z
𝑞(z) log 𝑝(z,x; 𝜃) + log 𝑝(x; 𝜃) − 𝐻(𝑞) ≥ 0 (3.5)

Rearranging, we re-derived the Evidence lower bound (ELBO) i.e. Equation (3.4):

log 𝑝(x; 𝜃) ≥ ∑
z
𝑞(z) log 𝑝(z,x; 𝜃) + 𝐻(𝑞) (3.6)

In general,
log 𝑝(x; 𝜃) = ELBO + 𝐷𝐾𝐿(𝑞(z)‖𝑝(z|x; 𝜃)) (3.7)

The closer 𝑞(z) is to 𝑝(z ∣ x; 𝜃), the closer the ELBO is to the true log-likelihood. Thus,
avoiding compute the complex and intractable log-likelihood of 𝑝𝜃 (𝑥), we maxmize its ELBO
i.e. the lower bound.

3.3 Variational Inference

• Question: What if the posterior 𝑝(z ∣ x; 𝜃) is intractable?
• Answer: Use Variational Inference to approximate it.

Definition 3.3 - Variational Inference.

We assume distribution 𝑞(z; 𝜙) is a tractable distribution over the hidden variables parame-
terized by 𝜙 (variational parameters). For example, 𝑞(z; 𝜙) is a Gaussian distribution with
mean and covariance specified by 𝜙:

𝑞(z; 𝜙) = 𝒩 (𝜇𝜙 , Σ𝜙)
So we can pick 𝜙 to make 𝑞(z; 𝜙) as close as possible to the intractable 𝑝(z ∣ x; 𝜃).

Now with two parameters 𝜃 and 𝜙, we can re-write the ELBO as:

log 𝑝(x; 𝜃) ≥ ∑z 𝑞(z; 𝜙) log 𝑝(z,x; 𝜃) + 𝐻(𝑞(z; 𝜙)) = ℒ(x; 𝜃 , 𝜙)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ELBO

= ℒ(x; 𝜃 , 𝜙) + 𝐷𝐾𝐿(𝑞(z; 𝜙)‖𝑝(z|x; 𝜃))
(3.8)

Here is a vivid figure to show the relationship between marginal likelihood and ELBO:

Skitsh qi’uthik illith! Page 12

Generative Model Learning Log CuiEM

Figure 6: Relationship between marginal likelihood and ELBO

3.4 Optimization

Weuse different variational parameters 𝜙𝑖 for every data point x𝑖 if wewant to extend themax-
imum likelihood learning to the enitire dataset. So the maximum likelihood learning objective
becomes below forms:

max
𝜃

𝑙(𝜃; 𝒟) = max
𝜃

∑
x𝑖∈𝒟

log 𝑝𝜃 (x𝑖; 𝜃) ≥ max
𝜃,𝜙1,⋯,𝜙𝑀

∑
x𝑖∈𝒟

ℒ(x𝑖; 𝜃 , 𝜙𝑖) (3.9)

After getting the optimization objective which is the right side of above inequality, we can
use (stochastic) gradient descent to optimize it. The algorithm’s pseudo-code is shown below:

Algorithm 1: Variational Inference Optimization Algorithm

1 Initialize 𝜃, 𝜙1, … , 𝜙𝑀 ;
2 Randomly sample a data point x𝑖 from dataset 𝒟 ;
3 while 𝜙𝑖,∗ is not approximatly converged to argmax𝜙 ℒ(x𝑖; 𝜃 , 𝜙) do
4 𝜙𝑖 ← 𝜙𝑖 + 𝜂∇𝜙𝑖ℒ(x𝑖; 𝜃 , 𝜙𝑖);
5 Compute ∇𝜃ℒ(x𝑖; 𝜃 , 𝜙𝑖,∗);
6 Update 𝜃 in the gradient direction.

The optimization process is easy unless the gradients is hard to compute, so we use Monte
Carlo sampling to lower down the difficulty. Also according to the Variational Inference, we
substitute the intractable posterior 𝑞(z) with the variational distribution 𝑞(z; 𝜙) in the ELBO:

ℒ(x; 𝜃 , 𝜙) = ∑
z
𝑞(z; 𝜙) log 𝑝(z,x; 𝜃) + 𝐻(𝑞(z; 𝜙))

= E𝑞(z;𝜙)[log 𝑝(z,x; 𝜃) − log 𝑞(z; 𝜙)]
≈ 1

𝐾 ∑
𝑘
[log 𝑝(z𝑘 ,x; 𝜃) − log 𝑞(z𝑘 ; 𝜙)]

(3.10)

Skitsh qi’uthik illith! Page 13

Generative Model Learning Log CuiEM

For now, the gradient with respect to 𝜃 is easy to compute if we sample z1, ⋯ , z𝐾 from
𝑞(z; 𝜙).

∇𝜃E𝑞(z;𝜙)[log 𝑝(z,x; 𝜃) − log 𝑞(z; 𝜙)] = E𝑞(z;𝜙)[∇𝜃 log 𝑝(z,x; 𝜃)]
≈ 1

𝐾 ∑
𝑘
∇𝜃 log 𝑝(z𝑘 ,x; 𝜃) (3.11)

However, the gradient with respect to 𝜙 is not easy to compute because the expection
depends on 𝜙. There is a general technique called REINFORCE to compute the gradient with
respect to 𝜙. But in here, we introduce a more efficient but only applicable to continuous z
called Reparameterization Trick.

Example 3.1 - Reparameterization Trick.

Objective: we want to compute a gradient with respect to 𝜙 of

𝐸𝑞(z;𝜙)[𝑟(z)] = ∫ 𝑞(z; 𝜙)𝑟(z)𝑑z (3.12)

Assumptipon: 𝑞(z; 𝜙) = 𝒩 (𝜇, 𝜎2𝐼) is Gaussian with parameters 𝜙 = (𝜇, 𝜎).
Noticing that sample from Gaussian distribution 𝑞(z; 𝜙) is also equivalent to sample 𝜖 from

𝒩 (0, 𝐼) and then take a linear transformation: z = 𝜇 + 𝜎𝜖 = 𝑔(𝜖; 𝜙)
By this equivalence we can compute the expection and gradient:

𝐸z∼𝑞(z;𝜙)[𝑟(z)] = ∫ 𝑞(z; 𝜙)𝑟(z)𝑑z = 𝐸𝜖∼𝒩 (0,𝑙)[𝑟(𝑔(𝜖; 𝜙))] = ∫𝒩 (𝜖)𝑟(𝜇 + 𝜎𝜖)𝑑𝜖 (3.13)

∇𝜙𝐸𝑞(z,𝜙)[𝑟(z)] = ∇𝜙𝐸𝜖[𝑟(𝑔(𝜖; 𝜙))]
= 𝐸𝜖[∇𝜙𝑟(𝑔(𝜖; 𝜙))]
≈ 1

𝐾 ∑
𝑘
∇𝜃 𝑟(𝑔(𝜖𝑘𝜙))

(3.14)

where 𝜖1, ⋯ , 𝜖𝑘 ∼ 𝒩 (0, 𝐼)

Back to our case, we can easily find out that the ELBO have the same form except that ours
is slightly more complicated because the term inside the expectation also depends on 𝜙, thus
𝑟(z) becomes 𝑟(z, 𝜙).

ℒ(x; 𝜃 , 𝜙) = ∑
z
𝑞(z; 𝜙) log 𝑝(z,x; 𝜃) + 𝐻(𝑞(z; 𝜙))

= 𝐸𝑞(z;𝜙)[log 𝑝(z,x; 𝜃) − log 𝑞(z; 𝜙)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟(z,𝜙)

] (3.15)

Skitsh qi’uthik illith! Page 14

Generative Model Learning Log CuiEM

3.5 Autoencoder Perspective

Now forget about variational inference for a moment, let’s see what the VAE looks like from
the perspective of autoencoder. Below figure is the illustration of variational autoencoder
model with the multivariate Gaussian assumption2.

Figure 7: VAE from the perspective of autoencoder

The whole process can be treated as an autoencoder with two parts:

1. Take a data point x𝑖, map it to ẑ by sampling from 𝑞𝜙(z|x𝑖) (encoder). Sample from a
Gaussian with parameters (𝜇, 𝜎) = encoder𝜙(x𝑖) (The Green part).

2. Reconstruct x̂ by sampling from 𝑝(x|ẑ; 𝜃) (decoder). Sample from a Gaussian with pa-
rameters decoder𝜃 (ẑ) (The Blue part).

2Figure comes from ”From Autoencoder to Beta-VAE” which is a very extraordinary blog post by Lilian.

Skitsh qi’uthik illith! Page 15

https://lilianweng.github.io/posts/2018-08-12-vae/

Generative Model Learning Log CuiEM

Flow Model 4
4.1 Quick Recap and Foreshadowing

Before in the Section Autoregressive Model and Section Variational Autoencoder we have
learned two types of models:

• Autoregressive Model: 𝑝𝜃 (𝑥) = ∏𝑛
𝑖=1 𝑝𝜃 (𝑥𝑖|𝑥<𝑖)

• Variational Autoencoders: 𝑝𝜃 (𝑥) = ∫ 𝑝𝜃 (𝑥, 𝑧)𝑑𝑧

Both of them have their own advantages and disadvantages in the evaluation of likelihood
and whether the model is able to learn leatent variable or not:

Model likelihood Can it learn latent variable?

Autoregressive Model Tractable Cannot learn
Variational Autoencoder Intractable Can learn

Table 1: Comparison of Autoregressive Model and Variational Autoencoder

The main idea of this section is to combine the advantages of both models, which means
we want to have a model that is able to learn latent variable and tractable in the evaluation of
likelihood. So we want to Map simple distributions (easy to sample and evaluate densities) to
complex distributions through an invertible transformation.

Key Idea: Invertible Transformation!

A flow model is similar to a variational autoencoder, except that it uses a invertible trans-
formation to map the simple distribution to the complex distribution: x = 𝑓𝜃 (z).

4.2 Change of Variables

Let’s first see a simple example of Change of Variable below:

Example 4.1 - A simple example of Change of Variable.

Q: Let 𝑍 be a uniform random variable 𝒰[0, 2] with density 𝑝(𝑧) = 1/2 for 𝑧 ∈ [0, 2]. Now let
𝑋 = 𝑓 (𝑍) = 4𝑍 . What is the 𝑝𝑋 (4)?
A: Clearly, 𝑋 is uniform in [0, 8], so 𝑝𝑋 (4) = 1/8

So howwe can get the distribution of𝑋 from the distribution of 𝑍 given the transformation
𝑓 ? By using the Change of Variable Formula.

Skitsh qi’uthik illith! Page 16

Generative Model Learning Log CuiEM

Theorem 4.1 - Change of Variable Formula (1D case).

If 𝑋 = 𝑓 (𝑍) and 𝑓 (⋅) is monotone with inverse 𝑍 = 𝑓 −1(𝑋) = ℎ(𝑋), then:

𝑝𝑋 (𝑥) = 𝑝𝑍 (ℎ(𝑥)) |𝑑ℎ(𝑥)𝑑𝑥 | (4.1)

Extend to general case in multi-dimensional case:

Theorem 4.2 - Change of Variable Formula (General case).

The mapping between 𝑍 and 𝑋 , given by f ∶ ℝ𝑛 → ℝ𝑛 is invertible such that 𝑋 = f(𝑍) and
𝑍 = f−1(𝑋). Then the change of variable formula is given by:

𝑝𝑋 (x) = 𝑝𝑍 (f−1(x)) |det (𝜕f
−1(x)
𝜕x)|

= 𝑝𝑍 (z) |det (𝜕f(z)𝜕z)|
−1

(If matrix is invertible)

(4.2)

4.3 Normalizing Flow Models

In the Section Variational Autoencoder, we know VAE generate samples form latent variable
𝑍 by a transformation of𝑋 through a function 𝑓𝜃 . Nowwewant to learn an invertible function
𝑓𝜃 to map the simple distribution to the complex distribution which can be shown in the figure
below which is similar to the Figure3.1:

Figure 8: Normalizing Simplified Flow Model

Using Change of Variable Formula (General case) we can get the marginal likelihood 𝑝(x)
as3:

𝑝𝑋 (x; 𝜃) = 𝑝𝑍 (f−1𝜃 (x)) |det (
𝜕f−1𝜃 (x)

𝜕x)| (4.3)

3Noticed that here x, z need to be continuous and have the same dimension

Skitsh qi’uthik illith! Page 17

Generative Model Learning Log CuiEM

Now with the key idea of flow model and the knowledge of Change of Variable Formula,
we can design a flow model to generate samples from a simple distribution to a complex dis-
tribution. Not just ONE transformation, but a sequence of transformations shown below!

z𝑚 = f𝑚𝜃 ∘ ⋯ ∘ f1𝜃 (z0) = f𝑚𝜃 (f𝑚−1𝜃 (⋯ (f1𝜃 (z0)))) ≜ f𝜃 (z0) (4.4)

By Change of Variable Formula (General case), we can get the marginal likelihood 𝑝(x) as
follows:

𝑝𝑋 (x; 𝜃) = 𝑝𝑍 (f−1𝜃 (x))
𝑀
∏
𝑚=1

|det (
𝜕(f𝑚𝜃)−1(z𝑚)

𝜕z𝑚
)| (4.5)

Extend to the entire datasets, we learning model via maximum likelihood:

max
𝜃

log 𝑝𝑋 (𝒟 ; 𝜃) = ∑
x∈𝒟

log 𝑝𝑍 (f−1𝜃 (x)) + log |det (
𝜕f−1𝜃 (x)

𝜕x)| (4.6)

As a matter of fact, the determinant of the Jacobian is the complicated which takes 𝑂(𝑛3)
time for an 𝑛 × 𝑛 matrix. So the key idea is to choose tranformations so that the resulting
Jacobian matrix has special structure. For example, the determinant of a triangular matrix is
the product of the diagonal entries, i.e., an 𝑂(𝑛) operation.

4.4 Different Designs

• NICE(Nonlinear Independent Components Estimation)(Dinh et al., 2014)

• Real-NVP(2016)

• IAF(Invertible Autoregressive Flow)(Kingma et al., 2016)

• MAF(Masked Autoregressive Flow)(Papamakarios et al., 2017)

• I-resnet(Behrmann et al., 2019)

• Glow(Kingma and Dhariwal, 2018)

• Mintnet(Song et al., 2019)

The details of some models will be talked in the future but not now.

4.4.1 NICE

NICE or Nonlinear Independent Components Estimation(Dinh et al., 2014) composes two
kinds of invertible transformations: additive coupling layers and rescaling layers.

4.4.2 Real-NVP

Real-NVP is an Non-volume preserving extension of NICE.

Skitsh qi’uthik illith! Page 18

Generative Model Learning Log CuiEM

Generative Adversarial Networks 5
5.1 Likelihood-Free Learning

In many cases, there is always a situation that the test log-likelihood is non-relevant to the
actual quality of samples generated by the model. For example, great test log-likelihoods could
still leads to poor samples:

Example 5.1.

For a discrtete noise mixture model 𝑝𝜃 (x) = 0.01𝑝𝑑𝑎𝑡𝑎(x)+0.99𝑝𝑛𝑜𝑖𝑠𝑒(x). We can easily see 99%
of the samples are just noise. Taking log, we get

log 𝑝𝜃 (x) = log[0.01𝑝data(x) + 0.99𝑝noise(x)]
≥ log 0.01𝑝data(x)
= log 𝑝data(x) − log 100

(5.1)

Combing with non-negativity of KL-Divergence, we get:

𝐸𝑝data[log 𝑝data(x))] ≥ 𝐸𝑝data[log 𝑝𝜃 (x)] ≥ 𝐸𝑝data[log 𝑝data(x)] − log 100 (5.2)

Thus as we increase the dimension 𝑛 of x = (𝑥1, … , 𝑥𝑛), likelihoods are great 𝐸𝑝data[log 𝑝𝜃 (x)] ≈𝐸𝑝data[log 𝑝data(x)] in very high dimensions.

Therefore, we want to consider an alternaive training objective that do not depend di-
rectly on a likelihood function which is called Likelihood-free Learning. For example, we can
compare two distributions’ difference in means or variances:

𝑇 (𝑆1, 𝑆2) = | 1|𝑆1|
∑
𝑥∈𝑆1

𝑥 − 1
|𝑆2|

∑
𝑥∈𝑆2

𝑥| (5.3)

Such test stastic is likelihood-free since it does not involve two distributions’ densities.
However, above test stastic is not a good choice beacause it’s too week to distinguish between
two distributions. So the Key Idea is to learn a statistic to automatically identify in what way
the two sets of samples 𝑆1 and 𝑆2 differ from each other.

Key Idea: Train a Classifer/Discriminator!

5.2 Generative Adversarial Networks

Combing discriminator with generator, we can build a simplified model structure of GAN
which is shown below picture:

Skitsh qi’uthik illith! Page 19

Generative Model Learning Log CuiEM

Figure 9: A simplified structure of GAN

In the generative adversarial network,𝐷𝜙 is the discriminator which is trained to maximize
the test stastic, or equivalently minimize calssfication loss:

max𝐷𝜙
𝑉 (𝑝𝜃 , 𝐷𝜙) = 𝐸x∼𝑝data[log𝐷𝜙(x)] + 𝐸x∼𝑝𝜃 [log(1 − 𝐷𝜙(x))]

≈ ∑
x∈𝑆1

log𝐷𝜙(x) + ∑
x∈𝑆2

[log(1 − 𝐷𝜙(x))] (5.4)

It can be easily sloved that the optimal discriminator is:

𝐷∗𝜃 (x) =
𝑝data(x)

𝑝data(x) + 𝑝𝜃 (x)
(5.5)

𝐺𝜃 is the generator is trained to minimize the test stastic which in other words is trying to
let discriminator cannot distinguish between real and fake samples. Thus the training objec-
tive of GAN is a two player minmax game between a generator and a discriminator:

min𝐺 max𝐷 𝑉 (𝐺, 𝐷) = 𝐸x∼𝑝data[log𝐷(x)] + 𝐸x∼𝑝𝐺 [log(1 − 𝐷(x))] (5.6)

Plug in the optimal discriminator 𝐷∗𝜃 (⋅) in Equation5.5, we have4:

𝑉 (𝐺, 𝐷∗𝐺(x)) = 𝐸x∼𝑝data [log
𝑝data(x)

𝑝data(x) + 𝑝𝐺(x)
] + 𝐸x∼𝑝𝐺 [log

𝑝𝐺(x)
𝑝data(x) + 𝑝𝐺(x)

]

= 𝐸x∼𝑝data [log
𝑝data(x)

𝑝data(x)+𝑝𝐺(x)
2

] + 𝐸x∼𝑝𝐺 [log
𝑝𝐺(x)

𝑝data(x)+𝑝𝐺(x)
2

] − log 4

= 𝐷𝐾𝐿 [𝑝data,
𝑝data + 𝑝𝐺

2] + 𝐷𝐾𝐿 [𝑝𝐺 ,
𝑝data + 𝑝𝐺

2]⏟⏟⏟
2×Jensen-Shannon Divergence (JSD)

− log 4

= 2𝐷𝐽𝑆𝐷[𝑝data, 𝑝𝐺] − log 4

(5.7)

Futhermore, plug in the optimal generator, we get:

𝑉 (𝐺∗, 𝐷∗𝐺(x)) = − log 4 (5.8)

4For the definition of Jensen Shannon Divergence, see Jensen-Shannon Divergence in Appendix B

Skitsh qi’uthik illith! Page 20

Generative Model Learning Log CuiEM

Algorithm 2: Generative Adversarial Networks Algorithm

1 for number of training iterations do
2 for 𝑘 steps do
3 Sample minibatch of 𝑚 noise samples {𝑧(1), … , 𝑧(𝑚)} from noise prior 𝑝𝑔(𝑧).
4 Sample minibatch of 𝑚 examples {𝑥(1), … , 𝑥(𝑚)} from data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥).
5 Update the discriminator parameters 𝜙 by ascending its stochastic gradient:

∇𝜙𝑉 (𝐺𝜃 , 𝐷𝜙) = ∇𝜙 1𝑚
𝑚
∑
𝑖=1

[log𝐷𝜙(x(𝑖)) + log (1 − 𝐷𝜙(𝐺𝜃 (z(𝑖))))]

6 Update the generator parameters 𝜃 by descending its stochastic gradient:

∇𝜃𝑉 (𝐺𝜃 , 𝐷𝜙) = 1
𝑚∇𝜃

𝑚
∑
𝑖=1

log(1 − 𝐷𝜙(𝐺𝜃 (z(𝑖))))

However, GAN faces a very serious problem: it is very diffcult to train in practice. In
fact, GAN is very unstable during optimaziation and a bigger problem whic is called ”Mode
Collapse” is often observed. Mode collapse refers to a phenomenon where the generator of a
GAN collapses to one or few samples. Also, to deal with these diffculties, there are many tricks
to train a GAN. Most of tricks are collected in this page: How to Train a GAN? by Soumith
Chintala.

5.3 Classes

There are many classes of GANs which can almost build a ZOO of GANs5. But here we only
show several classic and popular ones.

#TODO: Finish this subsection later.

5.3.1 f-GANs

From all above contents, we have already met two divergences: Jensen-Shannon Divergence
and KL divergence. These two divergences are all special cases of one divergence: f-divergence
6.

5.3.2 WGAN

5.3.3 BiGAN

5.3.4 CycleGANs

5https://github.com/hindupuravinash/the-gan-zoo The GAN Zoo: List of all named GANs
6For example: KL divergence is a special case of f-divergence with 𝑓 (𝑥) = 𝑥 log 𝑥 .

Skitsh qi’uthik illith! Page 21

https://github.com/soumith/ganhacks
https://github.com/hindupuravinash/the-gan-zoo

Generative Model Learning Log CuiEM

Energy-Based Generative Model 6
6.1 Parameterizing Probability Distributions

Now, forget all above knowledge and focus on the key building block of generative models:
Probability distributions 𝑝(𝑥) which must satisfy the following two properties:

• 𝑝(𝑥) is sum-to-one: ∑𝑥 𝑝(𝑥) = 1.
• 𝑝(𝑥) is non-negative: 𝑝(𝑥) ≥ 0.

The second property is important because it means the total ”volume” of the distribution
is fixed. However, we can never know the exact 𝑝(𝑥) but only get 𝑔(𝑥) through the generative
model. 𝑔𝜃 (𝑥) is easy to satisfy the second property, but 𝑔𝜃 (𝑥) might not sum-to-one. So, a
simple idea is just divide the volume to reach the onjective of normalization:

𝑝𝜃 (x) = 1
𝑍(𝜃)𝑔𝜃 (x) =

1
∫ 𝑔𝜃 (x)dx

𝑔𝜃 (x) = 1
𝑉 𝑜𝑙𝑢𝑚𝑒(𝑔𝜃)

𝑔𝜃 (x) (6.1)

Typically, choose 𝑔𝜃 (𝑥) so that we know the volume analytically. More complex models
can be obtained by combining these building blocks. For some reasons below:

• To capture very large variations in probability.

• Exponential families. Many common distributions can be written in this form.

• These distributions arise under fairly general assumptions in statistical physics (maxi-
mum entropy, second law of thermodynamics).

we want exponential form:

𝑝𝜃 (x) = 1
∫ exp(𝑓𝜃 (x))𝑑x

exp(𝑓𝜃 (x)) = 1
𝑍(𝜃) exp(𝑓𝜃 (x)) (6.2)

Now, we can choose any function 𝑓𝜃 (𝑥) we want, but it becomes hard to sample, evaluate,
and optimize because computing 𝑍(𝜃) numerically (when no analytic solution is available)
scales exponentially in the number of dimensions of x.

Skitsh qi’uthik illith! Page 22

Generative Model Learning Log CuiEM

Score-Based Generative Model 7
7.1 Denoising Score Matching

7.2 Sliced Score Matching

7.3 Noise Conditional Score Network

Denoising Score Matching in Section7.1 is the training method of Noise Conditional Score
Network.

Skitsh qi’uthik illith! Page 23

Generative Model Learning Log CuiEM

Maximum Likelihood Learning A

Mathmatical Theorems B
Theorem B.1 - Jensen Inequality.

Let 𝑓 be continuous and convex on an interval 𝐼 . If 𝑥1, ⋯ , 𝑥𝑛 are in 𝐼 and 0 < 𝑡1, 𝑡2, ⋯ , 𝑡𝑛 < 1
with 𝑡1 + 𝑡2 + ⋯ + 𝑡𝑛 = 1, then

𝑓 (𝑡1𝑥1 + 𝑡2𝑥2 + ⋯ + 𝑡𝑛𝑥𝑛) ≤ 𝑡1𝑓 (𝑥1) + 𝑡2𝑓 (𝑥2) + ⋯ + 𝑡𝑛𝑓 (𝑥𝑛) (B.1)

Definition B.1 - KL divergence.

The Kullback-Leibler (KL) divergence (also called relative entropy and I-divergence), denoted
𝐷KL(𝑃 ∥ 𝑄), is a type of statistical distance: a measure of how one reference probability distri-
bution P is different from a second probability distribution Q:

𝐷KL(𝑃 ∥ 𝑄) = ∑
𝑥∈𝒳

𝑃(𝑥) log(𝑃(𝑥)𝑄(𝑥)) (B.2)

Definition B.2 - Jensen-Shannon Divergence.

Let 𝑃 and 𝑄 be probability distributions over the same sample space. The Jensen-Shannon
divergence between 𝑃 and 𝑄 is defined as

𝐷JS(𝑃, 𝑄) = 1
2𝐷KL(𝑃 ∥ 𝑀) + 1

2𝐷KL(𝑄 ∥ 𝑀) (B.3)

where 𝑀 is the mean of 𝑃 and 𝑄: 𝑀 = 𝑃+𝑄
2

Definition B.3 - f-divergence.

Given two densities 𝑝 and 𝑞, the f -divergence is given by

𝐷𝑓 (𝑝, 𝑞) = 𝐸x∼𝑞 [𝑓 (𝑝(x)𝑞(x))] (B.4)

where 𝑓 is any convex, lower-semicontinuous function with 𝑓 (1) = 0.

Skitsh qi’uthik illith! Page 24

Generative Model Learning Log CuiEM

Definition B.4 - Fenchel Conjugate.

For any function 𝑓 (⋅), its convex conjugate is

𝑓 ∗(𝑡) = sup
𝑢∈dom𝑓

(𝑢𝑡 − 𝑓 (𝑢)) (B.5)

where dom𝑓 is the domain of 𝑓 .

Skitsh qi’uthik illith! Page 25

Generative Model Learning Log CuiEM

References B
Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J.-H. (2019). Invertible

residual networks. International conference on machine learning, 573–582.
Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear independent components estima-

tion. arXiv preprint arXiv:1410.8516.
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv

preprint arXiv:1605.08803.
Frey, B. J., Hinton, G. E., & Dayan, P. (1995). Does the wake-sleep algorithm produce good

density estimators? Advances in neural information processing systems, 8.
Germain, M., Gregor, K., Murray, I., & Larochelle, H. (2015). Made: Masked autoencoder for

distribution estimation. International conference on machine learning, 881–889.
Kingma, D. P. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions.

Advances in neural information processing systems, 31.
Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Im-

proved variational inference with inverse autoregressive flow. Advances in neural in-
formation processing systems, 29.

Larochelle, H., & Murray, I. (2011, November). The neural autoregressive distribution estima-
tor. In G. Gordon, D. Dunson, & M. Dudík (Eds.), Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics (pp. 29–37, Vol. 15). PMLR.

Ng, A., & Jordan, M. (2001). On discriminative vs. generative classifiers: A comparison of lo-
gistic regression and naive bayes. Advances in neural information processing systems,
14.

Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30.

Song, Y., Kim, T., Nowozin, S., Ermon, S., & Kushman, N. (2017). Pixeldefend: Leveraging gen-
erative models to understand and defend against adversarial examples. arXiv preprint
arXiv:1710.10766.

Song, Y., Meng, C., & Ermon, S. (2019). Mintnet: Building invertible neural networks with
masked convolutions. Advances in Neural Information Processing Systems, 32.

Uria, B., Murray, I., & Larochelle, H. (2014). Rnade: The real-valued neural autoregressive
density-estimator. https://arxiv.org/abs/1306.0186

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner,
N., Senior, A., Kavukcuoglu, K., et al. (2016). Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 12.

Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al. (2016). Condi-
tional image generation with pixelcnn decoders. Advances in neural information pro-
cessing systems, 29.

Van Den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural net-
works. International conference on machine learning, 1747–1756.

Skitsh qi’uthik illith! Page 26

https://arxiv.org/abs/1306.0186

	Introduction
	First Thing to Say
	Let's Begin with Chain Rule!
	Bayesian Network
	Discriminative VS. Generative
	Continuous Variables

	Autoregressive Model
	Fully Visible Sigmoid Belief Network (FVSBN)
	Neural Autoregressive Density Estimation (NADE)
	What if Neural Network?

	Variational Autoencoder
	Latent Variable Model
	The Evidence Lower bound
	Variational Inference
	Optimization
	Autoencoder Perspective

	Flow Model
	Quick Recap and Foreshadowing
	Change of Variables
	Normalizing Flow Models
	Different Designs

	Generative Adversarial Networks
	Likelihood-Free Learning
	Generative Adversarial Networks
	Classes

	Energy-Based Generative Model
	Parameterizing Probability Distributions

	Score-Based Generative Model
	Denoising Score Matching
	Sliced Score Matching
	Noise Conditional Score Network

	Maximum Likelihood Learning
	Mathmatical Theorems

